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３種類の座標系による運動方程式の比較 

 

 

運動方程式は表現座標系によって異なる式で表される。ここでは３種類の座標系での運動方程式を導出

し、それらを利用した物体の運動の計算例を示す。 
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１  慣性系における運動方程式 

物体の運動は慣性系で観察するのが簡単で、通常良く用いられる方法である。

図１-１に示したように慣性座標系Ｉを（O-x-y-z）としたとき、物体の速度および位置

は次の加速度を数値積分して求められる。 

 𝐑̈ =
𝐅

m
 ：加速度ベクトル････････････････････････････････････････････（1‐ 1） 

 

ここで、𝐑 ≡ (
x
y
z
) ：位置ベクトル 

𝐅 ：外力ベクトル 

m ：質量 

 

 

２  非慣性直交座標系における運動方程式 

見かけの力である慣性力を観察するため、非慣性系で物体の動きを観察す

る。 

非慣性座標系Ｌを（o-i-j-k）とする。非慣性系は原点が慣性系に対して加速

度運動し、その原点周りに回転運動する座標系である。 

𝐑 = 𝐝 + 𝐃L
I ∙ 𝐫 ：慣性座標系Ｉから見た物体の位置ベクトル･･･････････(2-1) 

ここで、  𝐝  ：慣性座標系Ｉから見た非慣性座標系Ｌの原点の位置ベクトル 

𝐫  ：非慣性座標系Ｌから見た物体の位置ベクトル 

𝐃L
I  ：慣性座標系Ｉから見た非慣性座標系Ｌの方向余弦行列 

上記を 2回微分して 

𝐑̇ = 𝐝̇ + 𝐃̇L
I ∙ 𝐫 + 𝐃L

I ∙ 𝐫̇ 

= 𝐝̇ + 𝐃L
I ∙ [𝛚L ×] ∙ 𝐫 + 𝐃L

I ∙ 𝐫̇ 

= 𝐝̇ + 𝐃L
I ∙ (𝐫̇ + 𝛚L × 𝐫) ：速度ベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・･(2-2) 

𝐑̈ = 𝐝̈ + 𝐃̇L
I ∙ (𝐫̇ + 𝛚L × 𝐫) + 𝐃L

I ∙ (𝐫̈ + 𝛚̇L × 𝐫 +𝛚L × 𝐫̇)  

= 𝐝̈ + 𝐃L
I ∙ [𝛚L ×] ∙ (𝐫̇ + 𝛚L × 𝐫) + 𝐃L

I ∙ (𝐫̈ + 𝛚̇L × 𝐫 +𝛚L × 𝐫̇)  

= 𝐝̈ + 𝐃L
I ∙ {𝛚L × (𝐫̇ + 𝛚L × 𝐫) + 𝐫̈ + 𝛚̇L × 𝐫 +𝛚L × 𝐫̇}  

= 𝐝̈ + 𝐃L
I ∙ {𝐫̈ + 2(𝛚L × 𝐫̇) + 𝛚L × (𝛚L × 𝐫) + 𝛚̇L × 𝐫} ：加速度ベクトル・・・・・・・・・・・・・・・・・・･(2-3) 

ここで、  𝐝̇ ：慣性座標系Ｉから見た非慣性座標系Ｌの原点の速度ベクトル 

𝐝̈ ：慣性座標系Ｉから見た非慣性座標系Ｌの原点の加速度ベクトル 

𝐫̇ ：非慣性座標系Ｌから見た物体の速度ベクトル 

𝐫̈ ：非慣性座標系Ｌから見た物体の加速度ベクトル 

𝛚L  ：非慣性座標系Ｌの回転角速度ベクトル 

𝛚̇L ：非慣性座標系Ｌの回転角加速度ベクトル 

 

慣性座標系における加速度の式(2-3)は、両辺に質量 m を乗じて力に変換して下記のようにニュートンの

運動方程式として表される。 

m𝐑̈ = 𝐅 = m𝐝̈ +m𝐃L
I ∙ {𝐫̈ + 2(𝛚L × 𝐫̇) + 𝛚L × (𝛚L × 𝐫) + 𝛚̇L × 𝐫} ･･･････････････････････････（2-4） 

ここで、m𝐝̈ ：非慣性座標系を並進運動させる力 
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式（2-4）の両辺を質量 m で割って、方向余弦行列𝐃L
Iの転置行列（逆行列に等しい）を左から掛けて非慣

性座標系Ｌに座標変換すると、 

𝐃L
I T ∙ 𝐅

m
= 𝐃L

I T ∙ 𝐝̈ + {𝐫̈ + 2(𝛚L × 𝐫̇) + 𝛚L × (𝛚L × 𝐫) + 𝛚̇L × 𝐫} ･・・・・・・・・・・・・・・・・・・・・・・・・・・(2‐ 5) 

式（2-5）から非慣性座標系Ｌにおける加速度ベクトル 𝐫̈  が下記のように求められる。 

𝐫̈ =
𝐃L
I T ∙ 𝐅

m
− 𝐃L

I T ∙ 𝐝̈ − 2(𝛚L × 𝐫̇) − 𝛚L × (𝛚L × 𝐫) − 𝛚̇L × 𝐫  ・・・・・・・・・・・・・・・・・・・・・・・・・・･･(2‐ 6) 

ここで、
𝐃L
I T ∙ 𝐅

m
                  ：外力 （による加速度） 

−𝐃L
I T ∙ 𝐝̈        ：並進的加速度運動による慣性力 （による加速度） 

−𝟐(𝛚L × 𝐫̇)      ：コリオリの力 （による加速度） 

−𝛚L × (𝛚L × 𝐫) ：遠心力 （による加速度） 

−𝛚̇L × 𝐫       ：オイラー力 （による加速度） 

式(2-6)の右辺第 1 項は実在する外力で、慣性座標系Ｉで表されている場合は非慣性座標系Ｌに座標変換さ

れる。右辺第 2項～第 5項の 4種の力は、非慣性座標系原点の並進的運動と原点回りの回転運動によって

発生した力で、非慣性系で物体の運動を記述したときの数式の上だけで現れ、実在しない「見かけの力」で

ある。 

 

簡単な例として等速円運動について示す。非慣性座標系（回転座標系）は図２-１に示したｋ軸周りにｉ-ｊ平

面内での回転(𝛚L =一定、𝛚̇L = 𝟎)とする。回転座標系に対する物体の運動は(𝐫 =一定、𝐫̇ = 𝟎、𝐫̈ = 𝟎)

なので、式(2-6)は次のように表される（回転座標系の原点は慣性系に一致させた）。 

𝟎 =
𝐃L
I T ∙ 𝐅

m
−𝛚L × (𝛚L × 𝐫) =

𝐃L
I T ∙ 𝐅

m
− [(

0
0
ωk

) × {(
0
0
ωk

) × (
r
0
0
)}] =

𝐃L
I T ∙ 𝐅

m
+ (

ωk
2r
0
0

) 

𝐃L
I T ∙ 𝐅 = −m(

ωk
2r
0
0

) = −m(ωk
2r)i ・・・・・・・･・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2‐ 7) 

よって、外力［𝐃L
I T ∙ 𝐅B］は向心力（−i方向）でなければならず、見かけの力mωk

2r（遠心力、i方向）とつり合う

ことになる。 

 

 

３  非慣性系における運動方程式の極座標系による表現 

極座標系Ｑ（o-𝐞r  𝐞θ -𝐞φ）は慣性座標系Ｉ（o-x-y-z）の第３軸（ｚ軸）周りに φ

回転し、第２軸（y 軸）が回転してできた新しい第２軸周りに θ回転した座標系

で、図３‐１に示す。 

(𝐞θ 𝐞φ 𝐞r) = (x y z) ∙ [φ]3 ∙ [θ]2 ：座標系の回転 

極座標系Ｑの座標軸を 𝐞r  𝐞θ -𝐞φ  の順にするため、軸入替え用の行列を

追加して、 

(𝐞r 𝐞θ 𝐞φ) = (x y z) ∙ [φ]3 ∙ [θ]2 ∙ (
0 1 0
0 0 1
1 0 0

) 

 

= (x y z) ∙ (
cosφ −sinφ 0
sinφ cosφ 0
0 0 1

) ∙ (
cos θ 0 sin θ
0 1 0

− sin θ 0 cosθ
) ∙ (

0 1 0
0 0 1
1 0 0

) 

𝐞φ 

𝐞θ 

θ 

図 3-1 極座標系 
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= (x y z) ∙ (
cosφ −sinφ 0
sinφ cosφ 0
0 0 1

) ∙ (
sin θ cosθ 0
0 0 1

cos θ −sin θ 0
) 

 

= (x y z) ∙ (
cosφ sin θ cosφ cosθ − sinφ
sinφ sin θ sinφ cosθ cosφ
cosθ −sin θ 0

) ････････････････････････････（３‐１） 

この両辺に左から (x y z) の転置行列（逆行列に等しい）を乗じて変形すると、次のように方向余弦行

列を表すことができる。 

(x y z)T ∙ (𝐞r 𝐞θ 𝐞φ) = (x y z)T ∙ (x y z) ∙ (
cosφ sin θ cosφ cosθ − sinφ
sinφ sin θ sinφ cosθ cosφ
cosθ −sin θ 0

) 

(

𝐞r ∙ x 𝐞θ ∙ x 𝐞φ ∙ x
𝐞r ∙ y 𝐞θ ∙ y 𝐞φ ∙ y

𝐞r ∙ z 𝐞θ ∙ z 𝐞φ ∙ z
) = (

cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφcos θ cosφ
cosθ −sinθ 0

) ：極座標系Ｑの方向余弦行列 

 

ここで、(x y z) = (
1 0 0
0 1 0
0 0 1

) のとき、  

 

𝐃Q
I ≡ (𝐞r 𝐞θ 𝐞φ) = (

cosφ sin θ cosφ cosθ − sinφ
sinφ sin θ sinφ cosθ cosφ
cosθ −sin θ 0

) ：極座標系Ｑの方向余弦行列･･････(３‐２) 

 

極座標系Ｑの角速度は、上の方向余弦行列を微分して、 

𝐃̇Q
I = (

−φ̇ sinφ sin θ + θ̇ cosφ cosθ −φ̇ sinφ cosθ − θ̇ cosφ sin θ −φ̇ cosφ

φ̇ cosφ sin θ + θ̇ sinφ cosθ φ̇ cosφ cosθ − θ̇ sinφ sin θ −φ̇sinφ

−θ̇ sin θ −θ̇cos θ 0

) 

 

= (
cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφcos θ cosφ
cosθ −sinθ 0

) ∙ (

0 −θ̇ −φ̇ sin θ

θ̇ 0 −φ̇ cosθ
φ̇ sin θ φ̇ cos θ 0

) 

 

𝐃̇Q
I = 𝐃Q

I ∙ [𝛚Q ×] = 𝐃Q
I ∙ (

0 −ωφ ωθ
ωφ 0 −ωr
−ωθ ωr 0

) と表せるから、 

 

(

0 −ωφ ωθ
ωφ 0 −ωr
−ωθ ωr 0

) = [𝛚Q ×] = (

0 −θ̇ −φ̇ sin θ

θ̇ 0 −φ̇ cosθ
φ̇ sin θ φ̇ cosθ 0

) 

 

𝛚Q = (

φ̇ cosθ
−φ̇ sin θ

θ̇

) ：極座標系Ｑの角速度ベクトル 

 

方向余弦行列（３-２）より、極座標系の軸単位ベクトルは次のように表される。 

𝐞r = cosφsin θ x + sinφ sin θ y + cosθ z ：動径方向単位ベクトル 

𝐞θ = cosφ cos θ x + sinφ cosθ y − sin θ z ：法線方向単位ベクトル 

𝐞φ = −sinφx + cosφy ：接線方向単位ベクトル 

ここで、(x y z) = (
1 0 0
0 1 0
0 0 1

) 、 (ẋ ẏ ż) = (
0 0 0
0 0 0
0 0 0

) 

 

これらを微分して、 

𝐞̇r = φ̇ (− sinφ sin θ x + cosφ sin θ y) + θ̇ (cosφ cosθ x + sinφcos θ y − sin θ z) 

= φ̇ sin θ (− sinφ x + cosφy) + θ̇𝐞θ 

= φ̇ sin θ𝐞φ + θ̇𝐞θ 
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𝐞̇θ = φ̇ (−sinφ cosθ x + cosφ cosθ y) + θ̇ (− cosφ sin θ x − sinφ sin θ y − cosθ z) 

= φ̇ cosθ𝐞φ − θ̇𝐞r 

𝐞̇φ = −φ̇(cosφ x + sinφy) 

この𝐞̇φは次のように書き直すことができる。 

sin θ 𝐞r = cosφ sin
2 θ x + sinφsin2 θy + sin θ cosθ z 

cosθ 𝐞θ = cosφ cos
2 θ x + sinφ cos2 θy − cos θ sin θ z 

sin θ 𝐞r + cos θ𝐞θ = cosφ (sin
2 θ + cos2 θ)x + sinφ (sin2 θ + cos2 θ)y 

= cosφ x + sinφy 

これを上の式に代入して、 

𝐞̇φ = −φ̇(sinθ 𝐞r + cosθ 𝐞θ) 

 

極座標系における物体の位置ベクトルは次のように表される。 

𝐑 = rQ𝐞r ：位置ベクトル･･････････････････････････････････････････････････････････････････････（3‐3） 

ここで、𝐑  ：慣性座標系Ｉから見た位置ベクトル 

𝐞r  ：慣性座標系Ｉから見た極座標系Ｑの動径方向単位ベクトル 

rQ  ：極座標系Ｑにおける動径方向の距離 

これを微分して速度ベクトルは次のように表される。 

𝐑̇ = ṙQ𝐞r + rQ𝐞̇r = ṙQ𝐞r + rQ(φ̇ sin θ 𝐞φ + θ̇𝐞θ) ：速度ベクトル･････････････････････････････････（3‐4） 

さらに微分して加速度ベクトルは次のように表される。 

𝐑̈ = r̈Q𝐞r + ṙQ𝐞̇r + ṙQ(φ̇ sin θ 𝐞φ + θ̇𝐞θ) + rQ(φ̈ sin θ 𝐞φ + φ̇θ̇ cos θ 𝐞φ + φ̇ sin θ 𝐞̇φ + θ̈𝐞θ + θ̇𝐞̇θ) 

= r̈Q𝐞r + ṙQ(φ̇ sin θ 𝐞φ + θ̇𝐞θ) + ṙQ(φ̇ sin θ 𝐞φ + θ̇𝐞θ) 

+rQ(φ̈ sin θ 𝐞φ + φ̇θ̇ cos θ 𝐞φ) − rQφ̇
2 sin θ (sin θ 𝐞r + cosθ𝐞θ) 

+rQθ̈𝐞θ + rQθ̇(φ̇ cos θ 𝐞φ − θ̇𝐞r) 

= (r̈Q − rQθ̇
2 − rQφ̇

2 sin2 θ)𝐞r 

+(rQθ̈ + 2ṙQθ̇ − rQφ̇
2 sin θ cosθ)𝐞θ 

+(rQφ̈ sin θ + 2ṙQφ̇ sin θ + 2rQφ̇θ̇ cos θ)𝐞φ ：加速度ベクトル･･････････････････････････････（3‐5） 

 

２項に示したように、加速度ベクトルの両辺に質量mを乗じて力の次元にすると、下記のように運動方程式

として表すことができる。 

m𝐑̈  = 𝐅 

𝐅 = m(r̈Q − rQθ̇
2 − rQφ̇

2 sin2 θ)𝐞r 

+ m(rQθ̈ + 2ṙQθ̇ − rQφ̇
2 sin θ cosθ)𝐞θ 

+ m(rQφ̈ sin θ + 2ṙQφ̇ sin θ + 2rQφ̇θ̇ cos θ)𝐞φ 

ここで極座標系で外力は次のように表すことができる。 

𝐅 = (𝐅 ∙ 𝐞r)𝐞r + (𝐅 ∙ 𝐞θ)𝐞θ + (𝐅 ∙ 𝐞φ)𝐞φ ：極座標系Ｑの座標軸方向の外力 

(𝐅 ∙ 𝐞r)𝐞r   = m(r̈Q − rQθ̇
2 − rQφ̇

2 sin2 θ)𝐞r ：動径方向の外力 

(𝐅 ∙ 𝐞θ)𝐞θ  = m(rQθ̈ + 2ṙQθ̇ − rQφ̇
2 sin θ cosθ)𝐞θ ：法線方向の外力 

(𝐅 ∙ 𝐞φ)𝐞φ = m(rQφ̈ sin θ + 2ṙQφ̇ sin θ + 2rQφ̇θ̇ cos θ)𝐞φ ：接線方向の外力 

以上より、rQ , θ , φ の 2 次導関数は次のように表される。 



6 

 

r̈Q =
𝐅 ∙ 𝐞r
m

+ rQ(θ̇
2 + φ̇2 sin2 θ) ：動径方向加速度････････････････････････････････････････････（3‐6） 

 

θ̈ =

𝐅 ∙ 𝐞θ
m − 2ṙQθ̇ + rQφ̇

2 sin θ cosθ

rQ
 ：法線方向角加速度･････････････････････････････････････（3‐ 7） 

 

φ̈ =

𝐅 ∙ 𝐞φ
m

− 2ṙQφ̇ sin θ − 2rQφ̇θ̇ cos θ

rQ sin θ
 ：接線方向角加速度･･･････････････････････････････････（3‐ 8） 

極座標系で物体の運動を求めるには、上の 3 元連立二階常微分方程式を数値積分することになる。 

 

 

４  例題 

４.１  地球周回軌道 

エンジン推力によって軌道変換しつつ地球周回する人工衛星の運動を計算する。 

運動方程式は次の３種類を比較できるように解く。 

(1) 慣性座標系で解く 

(2) 非慣性直交座標系で解く 

(3) 極座標系で解く 

なお、非慣性直交座標系は原点が慣性座標系に対して加速度運動するも

のとする。 

 

ここで用いる慣性座標系と非慣性直交座標系を図４-１に示す。図示した

慣性座標系は地球中心に原点、初期（t=0 時）のグリニッジ子午面と赤道面

の交線方向にｘ軸、自転軸方向にｚ軸、ｘ-ｙ-ｚで右手系を成す方向にｙ軸を

定義した座標系（o-x-y-z）である。図示した非慣性直交座標系は一般的には

「局地座標系」と呼ばれ、特定の地表面に原点を固定した座標系で、慣性座標系Ｉ（o-x-y-z）の第３軸（ｚ軸）

周りに自転を考慮した経度 λ + ωet だけ回転し、第２軸（ｙ軸）が回転して新しくできた第２軸周りに緯度−φ𝑐 

だけ回転してできた座標系（o-i-j-k）である。ここで i 軸は地表面の特定地点における鉛直上方向き、j 軸と k

軸は局所水平面内に在り、j 軸は東向き、k軸は北向きである。 

(i j k) = (x y z) ∙ [λ + ωet]3 ∙ [−φc]2  

  = (x y z) ∙ (
cos (λ + ωet) −sin (λ + ωet) 0

sin (λ + ωet) cos(λ + ωet) 0
0 0 1

) ∙ (
cosφc 0 − sinφc
0 1 0

sinφc 0 cosφc

) 

 

  = (x y z) ∙ (

cosφc cos (λ + ωet) −sin (λ + ωet) −sinφccos (λ + ωet)

cosφc sin (λ + ωet) cos(λ + ωet) −sinφcsin (λ + ωet)
sinφc 0 cosφc

) 

 

𝐃L
I = (

cosφ
c
cos (λ + ωet) −sin (λ + ωet) −sinφ

c
cos (λ + ωet)

cosφ
c
sin (λ + ωet) cos(λ + ωet) −sinφ

c
sin (λ + ωet)

sinφc 0 cosφc

) ：局地座標系Ｌ方向余弦行列 

φc ：緯度 [deg] 

λ  ：経度 [deg] 

ωe ：地球自転角速度 [deg/s] 

𝛚L ≡ (

ωi
ωj
ωk
) = 𝐃L

I T ∙ (
0
0
ωe

) = ωe (
sinφc
0

cosφc

) ：局地座標系Ｌ回転角速度ベクトル [deg/s] 

λ + ωet 

φ𝑐  

x 

y 

z 

𝐝 

図 4‐1 座標系 
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k 
𝐫 
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𝛚̇L = 𝟎 ：局地座標系Ｌ回転角加速度ベクトル [deg/s2] 

 

 

４.１.１  地球モデル 

地球は球形とする。 

μ = 3.986005 × 1014 ：地球重力定数 [m3/s2] 

Re = 6371 × 10
3 ：地球平均半径 [m] 

ωe = 4.178 × 10
−3 ：地球自転角速度 [deg/s] 

 

 

４.１.２  局地座標系の運動 

非慣性直交座標系は局地座標系を用いる。 

𝐃L
I = (

cosφ
𝑐
cos (λ + ωet) −sin (λ + ωet) −sinφ

𝑐
cos (λ + ωet)

cosφ
𝑐
sin (λ + ωet) cos(λ + ωet) −sinφ

𝑐
sin (λ + ωet)

sinφ𝑐 0 cosφ𝑐

) ：局地座標系方向余弦行列 

 

𝐝 ≡ (

dx
dy
dz

) = 𝐃L
I ∙ (

Re
0
0
) = Re (

cosφccos(λ + ωet)

cosφcsin(λ + ωet)
sinφc

) ：局地座標系原点位置 [m] 

 

これを微分して、 

𝐝̇ ≡ (

ḋx
ḋy

ḋz

) = 𝐃̇L
I ∙ (

Re
0
0
) = 𝐃L

I ∙ [𝛚L ×] ∙ (
Re
0
0
) = 𝐃L

I ∙ (

0 −ωk ωj
ωk 0 −ωi
−ωj ωi 0

) ∙ (
Re
0
0
) = 𝐃L

I ∙ (

0
Reωk
−Reωj

) 

= 𝐃L
I ∙ (

0
Reωe cosφ𝑐

0
) = Reωe (

− cosφ𝑐 sin (λ + ωet)

cosφ𝑐 cos (λ + ωet)
0

) ：局地座標系原点速度 [m/s] 

𝐝̈ ≡ (

d̈x
d̈y

d̈z

) = 𝐃̇L
I
∙ [𝛚L ×] ∙ (

Re
0
0
) = 𝐃L

I ∙ [𝛚L ×] ∙ [𝛚L ×] ∙ (
Re
0
0
) 

= 𝐃L
I ∙ (

0 −ωk ωj
ωk 0 −ωi
−ωj ωi 0

) ∙ (

0 −ωk ωj
ωk 0 −ωi
−ωj ωi 0

) ∙ (
Re
0
0
) = 𝐃L

I ∙ Re (
−ωj

2 −ωk
2

ωiωj
ωiωk

) 

 

= 𝐃L
I ∙ Reωe

2(
−cos2φ𝑐

0
sinφccosφc

) = Reωe
2(

−cos3φ𝑐 cos (λ + ωet) − sin
2φ𝑐cosφccos (λ + ωet)

− cos3φ𝑐 sin (λ + ωet) − sin
2φ𝑐cosφcsin (λ + ωet)

− sin φ
𝑐
cos2φ𝑐 + sin φ𝑐 cos

2φ𝑐

) 

 

= Reωe
2 (
−cosφccos (λ + ωet)

−cosφcsin (λ + ωet)
0

) ：局地座標系原点加速度 [m/s2] 

 

𝛚L ≡ (

ωi
ωj
ωk
) = 𝐃L

I T ∙ (
0
0
ωe

) = ωe (
sinφ𝑐
0

cosφ𝑐

) ：局地座標系回転角速度 [deg/s] 

 

𝛚̇L ≡ (

ω̇i
ω̇j
ω̇k

) = 𝟎 ：局地座標系回転角加速度 [deg/s2] 

(1) 初期値 

𝐃L0
I = (

cosφ
𝑐
cos λ −sin λ −sinφ

𝑐
cos λ

cosφ
𝑐
sinλ cos λ −sinφ

𝑐
sinλ

sinφ𝑐 0 cosφ𝑐

) ：局地座標系方向余弦行列初期値 
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𝐝0 ≡ (

dx0
dy0
dz0

) = Re (
cosφccosλ
cosφcsinλ
sinφc

) ：局地座標系原点初期位置 [m] 

 

𝐝̇0 ≡ (

ḋx0
ḋy0

ḋz0

) = ωeRe (
−cosφcsinλ
cosφccosλ

0

) ：局地座標系原点初期速度 [m/s] 

 

(2) 関連諸量 

φc = tan
−1

(

 
dz

√dx
2 + dy

2

)

  ：局地座標系原点緯度 [deg] 

 

λc = tan
−1 (

dy

dx
) −ωet ：局地座標系原点経度 [deg] 

 

 

４.１.３  物体座標系の回転運動 

物体座標系は一定の角加速度で運動するものとする。 

𝛚̇B ≡ (
ω̇R
ω̇P
ω̇Y

) ：角加速度（一定） [deg/s2] 

 

𝛚B0 ≡ (

ωR0
ωP0
ωY0

) ：初期角速度 [deg/s] 

ωR ：ロールレート [deg/s] 

ωP ：ピッチレート [deg/s] 

ωY ：ヨーレート [deg/s] 

𝐃B
I ≡ (xB yB zB) ：物体座標系Ｂ方向余弦行列 

 

(1) 微分方程式 

𝐃̇B
I ≡ (ẋB ẏB żB) = (xB yB zB) ∙ (

0 −ωY ωP
ωY 0 −ωR
−ωP ωR 0

) 

= (ωYyB −ωPzB ωRzB −ωYxB ωPxB −ωRyB) ：方向余弦行列微係数 

 

(2) 初期値 

物体座標系Ｂの初期姿勢は xB 軸（ロール軸）が速度ベクトル方向、zB 軸（ヨー軸）が位置ベクトル（地心半

径）の逆方向、yB軸（ピッチ軸）が zB軸と xB軸に垂直な方向とする。 

𝐃B0
I ≡ (xB0 yB0 zB0) = (

𝐑̇

|𝐑̇|
zB × xB −

𝐑

|𝐑|
) 

 

 = (

−sin λ sinφｃ cos λ − cosφｃ cos λ

cos λ sinφｃ sin λ − cosφｃ sin λ

0 − cosφｃ −sinφｃ

)  ：初期物体姿勢 
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４.１.４  外力 

物体に作用する外力としては、万有引力と衛星に搭載された推進装置の推力を考える。。 

𝐅 = −
μm

R3
𝐑 + TxB ：物体に作用する外力（万有引力+推力） [N] 

T  ：推力 [N] 

m ：質量 [kg] 

 

 

４.１.５  慣性座標系で解く 

(3) 微分方程式 

𝐑̈ =
𝐅

m
  [m s2⁄ ] 

 

(4) 初期値 

φｃ ：緯度 [deg] 

λ    ：経度 [deg] 

h   ：高度 [m] 

R0 = Re + h ：初期地心半径 [m] 

Ṙ0 = √
μ

R0
 ：初期速度 [m/s] 

𝐑0 ≡ (
x
y
z
) = R0(

cosφｃ cos λ

cosφｃ sin λ

sinφｃ

) ：慣性座標系初期位置ベクトル [m] 

初期速度は水平東向きとする。 

𝐑̇0 ≡ (
ẋ
ẏ
ż
) = Ṙ0 (

z × 𝐑0

|z × 𝐑0|
) 

=
Ṙ0

cosφｃ
(

−cosφｃ sin λ

cosφｃ cos λ

0

) = Ṙ0 (
−sin λ
cos λ
0

)  ：慣性座標系初期速度ベクトル [m/s] 

 

(5) 関連諸量 

𝐫 ≡ (
i
j
k
) = 𝐃L

I T ∙ (𝐑 − 𝐝) ：局地座標系における位置ベクトル [m] 

rQ = |𝐑| ：極座標系動径方向距離 [m] 

θ = tan−1 (
√x2 + y2

z
)  ：極座標系法線方向角 [deg] 

φ = tan−1 (
y

x
)  ：極座標系接線方向角 [deg] 

hL = |𝐑| − Re  ：局地座標系高度 [m] 

φL = 90° − θ  ：局地座標系緯度 [deg] 

λL = φ−ωet  ：局地座標系経度 [deg] 

 

 

φ 

θ 

x 

y 

z 

𝐑 

図４‐ 2 極座標系 

 

ωet λL 

 φL 

hL 

rQ 
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４.１.６  局地座標系（非慣性直交座標系）で解く 

(1) 微分方程式 

𝐫̈ =
𝐃L
I T ∙ 𝐅

m
− 𝐃L

I T ∙ 𝐝̈ − 2(𝛚L × 𝐫̇) − 𝛚L × (𝛚L × 𝐫) − 𝛚̇L × 𝐫  [m s2⁄ ] 

 

(2) 初期値 

𝐫0 ≡ (
i
j
k
) = 𝐃L0

I T
∙ (𝐑0 − 𝐝0) ：局地座標系初期位置ベクトル [m] 

局地座標系速度ベクトルは式（2-2）を変形して、次のように表される。 

𝐫̇0 = 𝐃L0
I T

∙ (𝐑̇0 − 𝐝̇0) − 𝛚L × 𝐫0 ：局地座標系初期速度ベクトル [m/s] 

𝐃L0
I = (

cosφ
𝑐
cos λ −sinλ −sinφ

𝑐
cos λ

cosφ
𝑐
sinλ cos λ −sinφ

𝑐
sin λ

sin φ𝑐 0 cosφ𝑐

) ：局地座標系方向余弦行列初期値 [ND] 

 

(3) 関連諸量 

𝐑 ≡ (
x
y
z
) = 𝐝 + 𝐃L

I ∙ 𝐫 ：慣性座標系における位置ベクトル [m] 

rQ = |𝐑| ：極座標系動径方向距離 [m] 

θ = tan−1 (
√x2 + y2

z
)  ：極座標系法線方向角 [deg] 

φ = tan−1 (
y

x
)  ：極座標系接線方向角 [deg] 

hL = |𝐑| − Re  ：局地座標系高度 [m] 

φL = 90° − θ  ：局地座標系緯度 [deg] 

λL = φ−ωet  ：局地座標系経度 [deg] 

 

 

４.１.７  極座標系で解く 

(1) 微分方程式 

r̈Q =
𝐅 ∙ 𝐞r
m

+ rQ(θ̇
2 + φ̇2 sin2 θ) ：動径方向加速度  [m s2⁄ ] 

θ̈ =

𝐅 ∙ 𝐞θ
m − 2ṙQθ̇ + rQφ̇

2 sin θ cosθ

rQ
 ：法線方向角加速度  [deg s2⁄ ] 

φ̈ =

𝐅 ∙ 𝐞φ
m − 2ṙQφ̇ sin θ − 2rQφ̇θ̇ cos θ

rQ sin θ
 ：接線方向角加速度  [deg s2⁄ ] 

ここで、0 < |rQ|、0° < |θ| < 180° とする。 

 

(2) 初期値 

𝐫Q0 ≡ (

rQ0
0
0
) ：極座標系初期動径ベクトル [m] 

rQ0 = |𝐑0| ：極座標系初期動径方向距離 [m] 

θ0 = 90° − φｃ ：極座標系初期法線方向角（緯度の余角） [deg] 

φ0 = λ ：極座標系初期接線方向角（経度） [deg] 
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極座標系Ｑの微係数は式（3-4）を変形して、次のように表される。 

𝐑̇ = ṙQ𝐞r + rQ(φ̇ sin θ 𝐞φ + θ̇𝐞θ) = (𝐑̇ ∙ 𝐞r)𝐞r + (𝐑̇ ∙ 𝐞θ)𝐞θ + (𝐑̇ ∙ 𝐞φ)𝐞φ 

(

ṙQ0
φ̇0
θ̇0

) = (

𝐑̇0 ∙ 𝐞r0
𝐑̇0 ∙ 𝐞θ0 (rQ0 sin θ0)⁄

𝐑̇0 ∙ 𝐞φ0 rQ0⁄

) 

𝐃Q0
I ≡ (𝐞r0 𝐞θ0 𝐞φ0) = (

cosφ0 sin θ0 cosφ0 cosθ0 −sinφ0
sinφ0 sin θ0 sinφ0 cosθ0 cosφ0
cos θ0 −sin θ0 0

) ：初期方向余弦行列 

𝛚Q0 = (

φ̇0 cosθ0
−φ̇0 sin θ0

θ̇0

) ：極座標系初期角速度 [deg/s] 

ṙQ0 = 𝐑̇0 ∙ 𝐞r0 ：極座標系初期動径方向速度 [m/s] 

θ̇0 = 𝐑̇0 ∙ 𝐞θ0 (rQ0 sin θ0)⁄  ：極座標系初期法線方向角速度 [deg/s] 

φ̇0 = 𝐑̇0 ∙ 𝐞φ0 rQ0⁄  ：極座標系初期接線方向角速度 [deg/s] 

 

(3) 関連諸量 

𝐑 ≡ (
x
y
z
) = rQ𝐞r ：慣性座標系における位置ベクトル [m] 

𝐫 ≡ (
i
j
k
) = 𝐃L

I T ∙ (𝐑 − 𝐝) ：局地座標系における位置ベクトル [m] 

hL = |𝐑| − Re  ：局地座標系高度 [m] 

φL = 90° − θ  ：局地座標系緯度 [deg] 

λL = φ−ωet  ：局地座標系経度 [deg] 

 


